首页 > 灵异恐怖 > 带记忆爱你 > 第221章 工业AI的突破

第221章 工业AI的突破(2/2)

目录

“以前我们是‘故障后维修’,现在是‘故障前预防’,设备故障率从之前的 12% 降到了 8.4%,维修成本每月减少了 30 万元。” 三一重工的生产总监在试点总结会上,对算法效果赞不绝口,当场决定将算法推广到工厂的 20 台核心设备上。

随后,辰星的 AI 团队又与比亚迪西安汽车工厂、中车株洲电力机车厂等制造企业达成合作。在比亚迪的汽车焊接车间,算法通过分析焊接机器人的电流波动、焊接温度等数据,提前预测出焊接枪头的磨损故障,将设备故障率降低 32%,焊接良品率提升 2.5%;在中车的机车组装车间,算法成功预测出牵引电机的绝缘层老化问题,避免了机车出厂后的潜在安全隐患。

为了让算法更好地服务客户,团队还开发了配套的 “故障预测可视化平台”—— 客户可以通过电脑或手机端,实时查看设备的运行状态、健康评分和故障预警信息,平台还会自动生成维修工单,推送至维修人员的移动端。平台还具备 “故障溯源” 功能,能分析故障发生的根本原因,为客户提供设备维护优化建议。

算法大规模应用三个月后,辰星发布了《工业设备故障预测算法应用报告》:截至目前,算法已在 12 家制造企业的 156 台核心设备上落地应用,平均帮助客户降低设备故障率 30%,减少停机时间 40%,节省维修成本 25%-35%。报告发布后,国内多家大型制造企业主动联系辰星,希望引入该算法。

在辰星的季度技术成果发布会上,陈默向到场的客户代表和媒体展示了算法的工作原理和应用案例。当大屏幕上播放着三一重工机械臂在算法预警下顺利完成维修、恢复生产的画面时,台下响起了热烈的掌声。林辰在会上强调:“工业 AI 的价值,不在于技术多先进,而在于能否真正解决企业的痛点。‘工业设备故障预测算法’的突破,是辰星‘AI + 工业互联网’战略的重要成果,未来我们还会继续深化研发,推出更多贴合制造企业需求的 AI 解决方案。”

此时的辰星 AI 团队,已不再是单纯的技术研发部门,而是成为了推动制造企业数字化转型的重要力量。而林辰知道,这只是辰星在工业 AI 领域的第一步 —— 接下来,团队还计划研发 “设备剩余寿命预测算法”“生产质量优化算法” 等更多产品,构建完整的工业 AI 解决方案体系,帮助更多制造企业实现 “智能制造”,为中国制造业的高质量发展注入 AI 动力。

目录
返回顶部